IBM SPSS Statistics 23 Step by Step

A Simple Guide and Reference 14th Edition

Answers to Selected Exercises

Darren George, Ph.D. Canadian University College

Paul Mallery, Ph.D.
La Sierra University

Contents

General Notes 1
Chapter 3: Creating and Editing a Data File 2
3-2 3
3-3 3
3-5 3
3-6 3
3-7 4
3-8 4
Chapter 4: Managing Data 5
4-2 7
4-3 8
4-5 9
4-6 9
4-8 10
4-9 10
4-11 10
4-12 10
4-14 10
4-15 11
Chapter 5: Graphs 13
5-1 14
5-2 14
5-4 14
5-5 15
Chapter 6: Frequencies 16
6-1 17
6-3 17
6-4 18
6-6 18
Chapter 7: Descriptive Statistics 19
7-1 20
7-2 20
Chapter 8: Crosstabulation and χ^{2} Analyses 21
8-1 22
8-2 23
8-3 23
Chapter 9: The Means Procedure 24
9-1 25
9-3 26
Chapter 10: Bivariate Correlation 27
10-1 28
Chapter 11: The T Test Procedure 29
11-1 31
11-2 34
11-3 35
11-4 35
11-8 37
11-9 37
Chapter 12: The One-Way ANOVA Procedure 38
12-1 39
12-2 40
12-3 42
12-4 42
Chapter 14: Three-Way ANOVA 43
14-1 45
14-2 48
14-3 48
14-6 49
14-7 51
Chapter 15: Simple Linear Regression. 52
15-1 54
15-2 55
15-3 55
15-5 55
15-8 55
15-9 55
Chapter 16: Multiple Regression Analysis 56
16-1 58
16-4 58
Chapter 18: Reliability Analysis 59
18-1 60
18-2 61
18-3 62
Chapter 23: MANOVA and MANCOVA 63
23-1 64
23-2 65
23-4 65
Chapter 24: Repeated-Measures MANOVA 66
24-1 67
24-2 67
24-4 68

General Notes

The following answers are in some cases fairly complete. In other cases, only portions of the answer are included.
The data files used are available for download at http://www.pearsonhighered.com/george. Note that if you are using the student version of SPSS, you should use the file helping3-studentversion.sav instead of helping3.sav, and the file divorce-studentversion.sav instead of divorce.sav.
Check with your instructor to find exactly what she or he wants you to turn in.
We list the questions from each chapter first, followed by answers to selected exercises.

2 IBM SPSS Statistics 23 Step by Step Answers to Selected Exercises

Chapter 3: Creating and Editing a Data File

1. Set up the variables described above for the grades.sav file, using appropriate variable names, variable labels, and variable values. Enter the data for the first 20 students into the data file.
2. Perhaps the instructor of the classes in the grades.sav dataset teaches these classes at two different schools. Create a new variable in this dataset named school, with values of 1 and 2. Create variable labels, where 1 is the name of a school you like, and 2 is the name of a school you don't like. Save your dataset with the name gradesme.sav.
3. Which of the following variable names will SPSS accept, and which will SPSS reject? For those that SPSS will reject, how could you change the variable name to make it "legal"?
```
\square age
] firstname
- @edu
\square sex.
] grade
\square not
\square anxeceu
\square date
\square iq
```

4. Using the grades.sav file, make the gpa variable values (which currently have two digits after the decimal point) have no digits after the decimal point. You should be able to do this without retyping any numbers. Note that this won't actually round the numbers, but it will change the way they are displayed and how many digits are displayed after the decimal point for statistical analyses you perform on the numbers.
5. Using grades.sav, search for a student with 121 total points. What is his or her name?
6. Why is each of the following variables defined with the measure listed? Is it possible for any of these variables to be defined as a different type of measure?

ethnicity	Nominal
extrcred	Ordinal
quiz4	Scale
grade	Nominal

7. Ten people were given a test of balance while standing on level ground, and ten other people were given a test of balance while standing on a 30° slope. Their scores follow. Set up the appropriate variables, and enter the data into SPSS.

Scores of people standing on level ground: $\quad 56,50,41,65,47,50,64,48,47,57$
Scores of people standing on a slope:
$30,50,51,26,37,32,37,29,52,54$
8. Ten people were given two tests of balance, first while standing on level ground and then while standing on a 30° slope. Their scores follow. Set up the appropriate variables, and enter the data into SPSS.

Participant:	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$
Score standing on level ground:	56	50	41	65	47	50	64	48	47	57
Score standing on a slope:	38	50	46	46	42	41	49	38	49	55

3－2

The variable view screen might look something like this once the new variable is set up：

	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
20	grade	String	8	0		None	None	8	三－Right	\＆Nominal
21	passfail	String	1	0		None	None	1	銥 Right	Ordinal
22	school	Numeric	2	0		\｛1，Good Sc．．．	None	8	銥 Right	\＆Nominal

3－3

Variable Name	SPSS will．．．	What could be changed？
Age	Accept	
sex．	Reject	Variable names can＇t include a＂．＂so just use＂sex＂without a period．

3－5

Dawne Rathbun received a score of 121 for the course．No one received a score of 121 on the final exam．
3－6

Variable	Currently de－ fined as	Could also be defined as
ethnicity	Nominal	Ethnicity will generally be defined as a nominal variable．The only exceptions might be if，for example，you were examining the relative size of different ethnicities in a certain population．In that case，where ethnicity has other the－ oretical meaning，ethnicity could be defined as an ordinal variable．

3-7

The variable view should look something like this, with one variable identifying whether the person was standing on level or sloped ground and a second variable identifying each person's balance score:

	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	ground	Numeric	2	0		\{1, Level\}...	None	8	三- Right	\& Nominal
2	balance	Numeric	3	0	Balance score	None	None	8	邫 Right	S Scale

Once the data is entered, the data view should look something like this:

	ground	balance
1	Level	56
2	Level	50
3	Level	41
4	Level	65
5	Level	47
6	Level	50
7	Level	64
8	Level	48
9	Level	47
10	Level	57
11	Slope	30
12	Slope	50
13	Slope	51
14	Slope	26
15	Slope	37
16	Slope	32
17	Slope	37
18	Slope	29
19	Slope	52
20	Slope	54

3-8

Note that, because each person took the balance test both on level ground and on a slope, there are ten rows (one for each person) rather than twenty rows (one for each time the balance test was given).

Chapter 4: Managing Data

Some of the exercises that follow change the original data file. If you wish to leave the data in their original form, don't save your changes.

Case Summaries

1. Using the grades.sav file, list variables (in the original order) from id to quiz5, first 30 students consecutive, fit on one page by editing.
2. Using the helping3.sav file, list variables hclose, hseveret, hcontrot, angert, sympathi, worry, obligat, hcopet, first 30 cases, fit on one page by editing.
3. List ID, lastname, firstname, gender for the first 30 students in the grades.sav file, with the lower division students listed first, followed by upper division students (lowup variable). Edit output to fit on one page.

Missing Values

4. Using the grades.sav file delete the quiz1 scores for the first 20 subjects. Replace the (now) missing scores with the average score for all other students in the class. Print out lastname, firstname, quiz1 for the first 30 students. Edit to fit on one page.

Computing Variables

5. Using the grades.sav file calculate total (the sum of all five quizzes and the final) and percent (100 times the total divided by possible points, 125). Since total and percent are already present, name the new variables total1 and percent1. Print out id, total, total1, percent, percent1, first 30 subjects. Total and total1; percent and percent1 should be identical.
6. Using the divorce.sav file compute a variable named spirit (spirituality) that is the mean of sp8 through sp57 (there should be 18 of them). Print out id, sex, and the new variable spirit, first 30 cases, edit to fit on one page.
7. Using the grades.sav file, compute a variable named quizsum that is the sum of quiz1 through quiz5. Print out variables id, lastname, firstname, and the new variable quizsum, first 30, all on one page.

Recode Variables

8. Using the grades.sav file, compute a variable named grade1 according to the instructions on page 73. Print out variables id, lastname, firstname, grade and the new variable grade1, first 30, edit to fit all on one page. If done correctly, grade and grade1 should be identical.
9. Using the grades.sav file; recode a passfail1 variable so that D's and F's are failing, and A's, B's, and C's are passing. Print out variables id, grade, passfail1, first 30, edit to fit all on one page.
10. Using the helping3.sav file, redo the coding of the ethnic variable so that Black $=1$, Hispanic $=2$, $\boldsymbol{A s i a n}=3$, Caucasian $=4$, and $\mathbf{O t h e r} / \mathbf{D T S}=5$. Now change the value labels to be consistent with reality (that is the coding numbers are different but the labels are consistent with the original ethnicity). Print out the variables id and ethnic, (labels, not values) first 30 cases, fit on one page.

Selecting Cases

11. Using the divorce.sav file select females ($\mathbf{s e x}=1$); print out id and sex, first 30 subjects, numbered, fit on one page.
12. Select all the students in the grades.sav file with previous GPA less than 2.00 , and percentages for the class greater than 85 . Print id, GPA, and percent on one page.
13. Using the helping3.sav file, select females (gender = 1) who spend more than the average amount of time helping (thelpInz >0). Print out id, gender, thelpInz, first 30 subjects, numbered, fit on one page.

Sorting Cases

14. Alphabetize the grades.sav file by lastname, firstname, Print out lastname, firstname, first 30 cases, edit to fit on one page.
15. Using the grades.sav file, sort by id (ascending order). Print out id, total, percent, and grade, first 30 subjects, fit on one page.

4-2

	HELPER RATES CLOSENESS OF RELATIONSH IP	HELPER MEAN SEVERITY RATING	MEAN RATING OF FOUR ANGER QUESTIONS	HELPER MEAN RATING OF CONTROLLA BILITY	MEAN RATING OF FOUR SYMPATHY QUESTIONS	HELPER RATING OF WORRY EXPERIENCE D BY HELPER	HELPER RATING OF OBLIGATION FELT
1	5	4.0	1.0	4.0	5.3	1	1
2	7	5.0	4.0	4.5	5.8	6	4
3	4	6.7	1.0	4.0	4.5	6	6
4	5	4.0	1.3	3.0	5.3	4	4
5	6	4.5	1.0	1.5	5.5	4	6
a	7	25	10	10	10	a	\wedge

8 IBM SPSS Statistics 23 Step by Step Answers to Selected Exercises
4-3
Case Summaries

			lastname	firstname
Lower or upper division	Lower	1	VILLARRUZ	ALFRED
		2	OSBORNE	ANN
		3	LIAN	JENNY
		4	MISCHKE	ELAINE
		5	WU	VIDYUTH
		6	TORRENCE	GWEN
		7	CARPIO	MARY
		8	SAUNDERS	TAMARA
		Total	8	8
	Upper	1	VALAZQUEZ	SCOTT
		2	GALVEZ	JACKIE
		3	GUADIZ	VALERIE
		4	RANGIFO	TANIECE
		5	TOMOSAWA	DANIEL
		6	BAKKEN	KREG
		7	LANGFORD	DAWN
		8	VALENZUELA	NANCY
		9	SWARM	MARK
		10	KHOURY	DENNIS
		11	AUSTIN	DERRICK
		12	POTTER	MICKEY
		13	LEE	JONATHAN
		14	DAYES	ROBERT
		15	STOLL	GLENDON
		16	CUSTER	JAMES
		17	CHANG	RENE
		18	CUMMINGS	DAVENA
		19	BRADLEY	SHANNON
		20	JONES	ROBERT
		21	UYEYAMA	VICTORINE
		22	LUTZ	WILLIAM
		Total	22	22
	Total	N	30	30

a Limited to first 30 cases.

4-5

Follow sequence steps 5c and 5c' to complete this calculation.

4-6

Case Summaries ${ }^{\text {a }}$				
		id	sex	Spirituality
1		1	female	3.72
2		2	female	5.28
3		3	female	5.83
4		4	female	5.89
5		5	female	5.44
6		6	male	5.39
7		7	male	5.56
8		8	female	5.39
9		9	male	4.89
10		10	female	6.06
11		11	female	5.61
12		12	female	6.28
13		13	male	6.28
14		14	male	5.28
15		15	male	4.83
16		16	female	5.11
17		17	male	5.72
18		18	male	5.78
19		19	female	5.00
20		20	female	6.28
21		21	female	4.72
22		22	female	4.72
23		23	female	5.56
24		24	male	5.00
25		25	male	5.83
26		26	female	5.61
27		27	male	4.78
28		28	female	5.94
29		29	male	4.83
30		30	female	4.33
Total	N	30	30	30

a. Limited to first 30 cases.

4-8

Case Summaries

| | ID | LASTNAME | FIRSTNAME | GRADE | GRADE2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 106484 | VILLARRUZ | ALFRED | D | D |
| 2 | 108642 | VALAZQUEZ | SCOTT | C | C |
| 3 | 127285 | GALVEZ | JACKIE | C | C |
| 4 | 132931 | OSBORNE | ANN | B | B |
| 5 | 140219 | GUADIZ | VALERIE | B | B |

a Limited to first 30 cases.

4-9

Follow sequence step 5 d ' but use a range of 70 to 100 for " P ", and 0 to 69.9 for " F ".

4-11

Case Summaries $^{\text {a }}$		
	id	sex
1	1	female
2	2	female
3	3	female
4	4	female
5	5	female

4-12

Case Summaries

	ID	LASTNAME	FIRSTNAME	GPA	PERCENT	
1	140219	GUADIZ	VALERIE	1.84	86.4	
2	417003	EVANGELIST	NIKKI	1.91	87.2	
Total	N	2	2	2	2	2

a Limited to first 100 cases.

4-14

ID	LASTNAME	FIRSTNAME
1	779481	AHGHEL
2	BRENDA	
3	217683	ANDERSON

4-15
Case Summaries(a)

	id	total	percent	grade
1	106484	80	64	D
2	108642	96	77	C
3	127285	98	78	C
4	132931	103	82	B
5	140219	108	86	B
6	142630	122	98	A
7	153964	112	90	A
8	154441	120	96	A
9	157147	123	98	A
10	164605	124	99	A
11	164842	97	78	C
12	167664	118	94	A
13	175325	111	89	B
14	192627	84	67	D
15	211239	79	63	D
16	219593	94	75	C
17	237983	92	74	C
18	245473	88	70	C
19	249586	98	78	C
20	260983	106	85	B
21	273611	78	62	D
22	280440	114	91	A
23	287617	98	78	C
24	289652	109	87	B
25	302400	65	52	F
26	307894	90	72	C
27	337908	108	86	B
28	354601	120	96	A
29	378446	81	65	D
30	380157	118	86	B
31	390203	97	78	C
32	392464	103	82	B
33	414775	96	77	C
34	417003	109	87	B

	id	total	percent	grade
35	419891	92	74	C
36	420327	103	82	B
37	434571	98	78	C
38	436413	96	77	C
39	447659	99	79	C
40	463276	123	98	A
Total N	40	40	40	40

a Limited to first 40 cases.

Chapter 5: Graphs

All of the following exercises use the grades.sav sample data file.

1. Using a bar chart, examine the number of students in each section of the class along with whether or not students attended the review session. Does there appear to be a relation between these variables?
2. Using a line graph, examine the relationship between attending the review session and section on the final exam score. What does this relationship look like?
3. Create a boxplot of quiz $\mathbf{1}$ scores. What does this tell you about the distribution of the quiz scores? Create a boxplot of quiz 2 scores. How does the distribution of this quiz differ from the distribution of quiz 1 ? Which case number is the outlier?
4. Create an error bar graph highlighting the 95% confidence interval of the mean for each of the three sections' final exam scores. What does this mean?
5. Based on the examination of a histogram, does it appear that students' previous GPA's are normally distributed?
6. Create the scatterplot described in Step 5f (page 98). What does the relationship appear to be between gpa and academic performance (total)? Add a regression lines for both men and women to this scatterplot. What do these regression lines tell you?
7. By following all steps on pages 90 and 91 , reproduce the bar graph shown on page 91 .
8. By following all steps on pages 92 and 93 , reproduce the line graph shown on page 93 .
9. By following all steps on pages 93 , reproduce the pie chart shown on page 93 .
10. By following all steps on page 94 , reproduce the Boxplot shown on page 95.
11. By following all steps on pages 95 and 96, reproduce the Error Bar Chart shown on page 96. Note that the edits are not specified on page 96 . See if you can perform the edits that produce an identical chart.
12. By following all steps on pages 96 and 97 , reproduce the histogram shown on page 97.
13. By following all steps on page 98, reproduce the scatterplot shown on page 98.

5-1

There does appear to be a relationship (though we don't know if it's significant or not): People in Section 3 were somewhat more likely to skip the review session than in sections 1 or 2 , and most people who attended the review sessions were from Section 2, for example. This relationship may be clearer with stacked rather than clustered bars, as there aren't the same number of people in each section:

5-2

Though it looks like attending the review sessions was helpful for all students, it seems to have been particularly helpful for students in Section 1. For this graph, we have modified the Y-axis to range from 55 to 65 ; the default is a much more compressed graph.

5-4

This is a good example of why we need to run statistical tests. The lower error bar or section 1, for example, overlaps the upper error bar for section 3 by more than a half of a one-sided error bar (and vice versa). So, the population mean for section 1 is probably not statistically significant. Because the error bars aren't quite the same length, though, it may still be worth running a test to see if they are significantly different.

5-5

$\begin{aligned} & \text { Mean }=2.7789 \\ & \text { 2 }\end{aligned}$ Std. Dev. $=0.7638$
$N=105$
$\mathrm{N}=105$

Note that the GPA's below the median appear fairly normal, but those above the median do not.

Chapter 6: Frequencies

Notice that data files other than the grades.sav file are being used here. Please refer to the Data Files section starting on page 385 to acquire all necessary information about these files and the meaning of the variables. As a reminder, all data files are downloadable from the web address shown above.

1. Using the divorce.sav file display frequencies for sex, ethnic, and status. Print output to show frequencies for all three; edit output so it fits on one page. On a second page, include three bar graphs of these data and provide labels to clarify what each one means.
2. Using the graduate.sav file display frequencies for motive, stable, and hostile. Print output to show frequencies for all three; edit output so it fits on one page. Note: this type of procedure is typically done to check for accuracy of data. Motivation (motive), emotional stability (stable), and hostility (hostile) are scored on 1- to 9 -point scales. You are checking to see if you have, by mistake, entered any 0 s or 99 s .
3. Using the helping3.sav file compute percentiles for thelplnz (time helping, measured in z scores), and tqualitz (quality of help measured in z scores). Use percentile values 2, 16, 50, 84, 98. Print output and circle values associated with percentiles for thelplnz; box percentile values for tqualitz. Edit output so it fits on one page.
4. Using the helping3.sav file compute percentiles for age. Compute every $10^{\text {th }}$ percentile $(10,20,30$, etc.). Edit (if necessary) to fit on one page.
5. Using the graduate.sav file display frequencies for gpa, areagpa, grequant. Compute quartiles for these three variables. Edit (if necessary) to fit on one page.
6. Using the grades.sav file create a histogram for final. Include the normal curve option. Create a title for the graph that makes clear what is being measured. Perform the edits on page 97 so the borders for each bar are clear

6-1

				Cumulative Per- cent	
Valid	female	119	52.0	52.0	52.0
	male	110	48.0	48.0	100.0
	229	100.0	100.0		

6-3

Statistics
$\left.\left.\begin{array}{|ll|r|r|}\hline & & \begin{array}{r}\text { MEAN OF } \\ \text { HELPER/ }\end{array} & \begin{array}{c}\text { MEAN OF } \\ \text { HELPER/ } \\ \text { RECIPIENT } \\ \text { RECIPIENT }\end{array} \\ \text { LNZHELP }\end{array}\right] \begin{array}{c}\text { ZQUALITY } \\ \text { HELP }\end{array}\right]$

6-4

Statistics

AGE

N	Valid Missing	537
Percentiles	10	20.00

6-6

Distribution of Final Exam Scores

Mean $=61.48$
Std. Dev. $=7.943$
$\mathrm{N}=105$

Chapter 7: Descriptive Statistics

Notice that data files other than the grades.sav file are being used here. Please refer to the Data Files section starting on page 385 to acquire all necessary information about these files and the meaning of the variables. As a reminder, all data files are downloadable from the web address shown above.

1. Using the grades.sav file select all variables except lastname, firstname, grade, passfail. Compute descriptive statistics including mean, standard deviation, kurtosis, skewness. Edit so that you eliminate Std. Error (Kurtosis) and Std. Error (Skewness) making your chart easier to interpret. Edit the output to fit on one page.

- Draw a line through any variable for which descriptives are meaningless (either they are categorical or they are known to not be normally distributed).
- Place an "*" next to variables that are in the ideal range for both skewness and kurtosis.
- Place an \mathbf{X} next to variables that are acceptable but not excellent.
- Place a $\boldsymbol{\Psi}$ next to any variables that are not acceptable for further analysis.

2. Using the divorce.sav file select all variables except the indicators (for spirituality, sp8 - sp57, for cognitive coping, cc1-cc11, for behavioral coping, bc1-bc12, for avoidant coping, ac1-ac7, and for physical closeness, pc1-pc10). Compute descriptive statistics including mean, standard deviation, kurtosis, skewness. Edit so that you eliminate Std. Error (Kurtosis) and Std. Error (Skewness) and your chart is easier to interpret. Edit the output to fit on two pages.

- Draw a line through any variable for which descriptives are meaningless (either they are categorical or they are known to not be normally distributed).
- Place an "*" next to variables that are in the ideal range for both skewness and kurtosis.
- Place an \mathbf{X} next to variables that are acceptable but not excellent.
- Place a $\boldsymbol{\Psi}$ next to any variables that are not acceptable for further analysis.

3. Create a practice data file that contains the following variables and values:

- VAR1: $\begin{array}{lllllllllll}3 & 5 & 7 & 6 & 2 & 1 & 4 & 5 & 9 & 5\end{array}$
- VAR2: $\quad \begin{array}{llllllllll}9 & 8 & 7 & 6 & 2 & 3 & 3 & 4 & 3 & 2\end{array}$
- VAR3: $\begin{array}{lllllllllllll}10 & 4 & 3 & 5 & 6 & 5 & 4 & 5 & 2 & 9\end{array}$

Compute: the mean, the standard deviation, and variance and print out on a single page.

7-1

7-2

Descriptive Statistics

	N	Mean	Std.	Devia-	Skewness	Kurtosis
ID	229	116.32	66.903		-. 007	1
SEX AGE	229	$\begin{aligned} & 1.48 \\ & 41.90 \end{aligned}$	$\begin{aligned} & .5011 \\ & 9.881 \end{aligned}$		$\begin{array}{r} .079 \\ .679 \end{array}$	$\begin{aligned} & -2.011 \\ & .910 \end{aligned}$

Chapter 8: Crosstabulation and χ^{2} Analyses

For each of the chi-square analyses computed below:

1. Circle the observed (actual) values.
2. Box the expected values.
3. Put an * next to the unstandardized residuals.
4. Underline the significance value that shows whether observed and expected values differ significantly.
5. Make a statement about independence of the variables involved.
6. State the nature of the relationship. \#5 identifies whether there is a relationship, now you need to indicate what that relationship is. Example: Men tend to help more with goal-disruptive problems whereas women tend to help more with relational problems.
7. Is there a significant linear association?
8. Does linear association make sense for these variables?
9. Is there a problem with low-count cells?
10. If there is a problem, what would you do about it?
11. File: grades.sav. Variables: gender by ethnic. Select: observed count, expected count, unstandarized residuals. Compute: Chi-square, Phi and Cramer's V. Edit to fit on one page, print out, then perform the 10 operations listed above.
12. File: grades.sav. Variables: gender by ethnic. Prior to analysis, complete the procedure shown in Step 5 c (page 129) to eliminate the "Native" category (low-count cells). Select: observed count, expected count, unstandarized residuals. Compute: Chi-square, Phi and Cramer's V. Edit to fit on one page, print out, then perform the 10 operations listed above.
13. File: helping3.sav. Variables: gender by problem. Select: observed count, expected count, unstandarized residuals. Compute: Chi-square, Phi and Cramer's V. Edit to fit on one page, print out, then perform the 10 operations listed above.
14. File: helping3.sav. Variables: school by occupat. Prior to analysis, select cases: "school > 2 \& occupat < 6". Select: observed count, expected count, unstandarized residuals. Compute: Chisquare, Phi and Cramer's V. Edit to fit on one page, print out, then perform the 10 operations listed above.
15. File: helping3.sav. Variables: marital by problem. Prior to analysis, eliminate the "DTS" category (marital < 3). Select: observed count, expected count, unstandarized residuals. Compute: Chisquare, Phi and Cramer's V. Edit to fit on one page, print out, then perform the 10 operations listed above.

8-1
gender * ethnicity Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	1.193^{a}	4	$\frac{.879}{.867}$
Likelihood Ratio	1.268	4	$\frac{.8}{2}$
Linear-by-Linear	.453	1	.501
Association	105		
N of Valid Cases			

a. 3 cells (30.0%) have expected count less than 5 . The minimum expected count is 1.95 .

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.107	.879
	Cramer's V	.107	.879
N of Valid Cases		105	

5. Ethnicity and gender are independent of each other.
6. There is no difference of gender balance across different ethnic groups. or, Across different ethnic groups there is no difference in the balance of men and women.
7. No
8. No
9. Yes, there are 30% of cells with an expected value of less than 5 . Acceptable is less than 25%.
10. Delete the category which most contributes to the low cell counts, the "Native" category in this case.

8-2

Symmetric Measures

		Value	Approx. Siq.
Nominal by Nominal	Phi	062	. 942
	Cramer's V		. 942
N of Valid Cases		100	

a Not assuming the null hypothesis.
b Using the asymptotic standard error assuming the null hypothesis.
5. Ethnicity and gender are independent of each other.

8-3

5. Gender and problem type are dependent, that is, which problems receive the most attention is dependent upon the gender of the helper.
6. While there are no significant gender differences in the likelihood of helping with illness or catastrophic problems, women are significantly more likely to help with relational problems whereas men are significantly more likely to help with goal-disruptive problems.
7. No
8. No
9. No, there are no cells with an expected value of less than 5. Acceptable is less than 25%.
10. Delete the category which most contributes to the low cell counts. There are none here.

Chapter 9: The Means Procedure

1. Using the grades.sav file use the Means procedure to explore the influence of ethnic and section on total. Print output, fit on one page, in general terms describe what the value in each cell means.
2. Using the grades.sav file use the Means procedure to explore the influence of year and section on final. Print output, fit on one page, in general terms describe what the value in each cell means.
3. Using the divorce.sav file use the Means procedure to explore the influence of gender (sex) and marital status (status) on spiritua (spirituality-high score is spiritual). Print output and, in general terms, describe what the value in each cell means.

9-1

Report				
total				
ethnicity	section	Mean	N	Std. Deviation
Native	2	90.25	4	15.042
	3	115.00	1	
	Total	95.20	5	17.094
Asian	1	108.00	7	12.423
	2	97.78	9	14.394
	3	105.50	4	6.351
	Total	102.90	20	12.876
Black	1	105.14	7	12.185
	2	105.00	7	11.547
	3	93.10	10	16.509
	Total	100.08	24	14.714
White	1	105.75	16	17.628
	2	100.00	18	10.123
	3	100.91	11	16.736
	Total	102.27	45	14.702
Hispanic	1	94.67	3	27.154
	2	104.00	1	
	3	90.57	7	21.816
	Total	92.91	11	21.215
Total	1	105.09	33	16.148
	2	99.49	39	12.013
	3	97.33	33	17.184
	Total	100.57	105	15.299

The ETHNICITY column identifies the ethnic group for which data are entered.
The SECTION column identifies which of the three sections individuals of a particular ethnic group are enrolled.
The MEAN column identifies the mean total points for the individuals in each cell of the table.
The \mathbf{N} column identifies how many individuals are in each group.
The STD. DEVIATION column identifies the standard deviation for the values in each category.

9-3

The SEX column identifies the gender of the subjects.
The STATUS column identifies the marital status (4 levels) of women (first) then men. The MEAN column identifies the mean total points for the individuals in each cell of the table.
The \mathbf{N} column identifies how many individuals are in each group.
The STD. DEVIATION column identifies the standard deviation for the values in each category.

Chapter 10: Bivariate Correlation

1. Using the grades.sav file create a correlation matrix of the following variables; id, ethnic, gender, year, section, gpa, quiz1, quiz2, quiz3, quiz4, quiz5, final, total; select one-tailed significance; flag significant correlations. Print out results on a single page.

- Draw a single line through the columns and rows where the correlations are meaningless.
- Draw a double line through cells where correlations exhibit linear dependency.
- Circle the 1 "largest" (greatest absolute value) NEGATIVE correlation (the p value will be less than .05) and explain what it means.
- Box the 3 largest POSITIVE correlations (each p value will be less than .05) and explain what they mean.
- Create a scatterplot of gpa by total and include the regression line. (see Chapter 5, page 97-98 for instructions).

2. Using the divorce.sav file create a correlation matrix of the following variables; sex, age, sep, mar, status, ethnic, school, income, avoicop, iq, close, locus, asq, socsupp, spiritua, trauma, Isatisy; select one-tailed significance; flag significant correlations. Print results on a single page. Note: Use Data Files descriptions (p. 385) for meaning of variables.

- Draw a single line through the columns and rows where the correlations are meaningless.
- Draw a double line through the correlations where there is linear dependency
- Circle the 3 "largest" (greatest absolute value) NEGATIVE correlations (each p value will be less than .05) and explain what they mean.
- Box the 3 largest POSITIVE correlations (each p value will be less than .05) and explain what they mean.
- Create a scatterplot of close by Isatisy and include the regression line. (see Chapter 5, page 97-98 for instructions).
- Create a scatterplot of avoicop by trauma and include the regression line.

10-1

$r=-.21, p=.014$: Students in lower numbered sections (e.g. sections 1 and 2) tend to score higher on quiz 1 than students in lower numbered sections.
$r=.86, p<.001:$ Those who score higher on quiz 1 tend to score higher on quiz 3.
$r=.83, p<.001$: Those who score higher on quiz 1 tend to score higher on quiz 4.
$r=.80, p<.001$: Those who score higher on quiz 3 tend to score higher on quiz 4.

Chapter 11: The T Test Procedure

For questions 1-7, perform the following operations:
a) Print out results
b) Circle the two mean values that are being compared.
c) Circle the appropriate significance value (be sure to consider equal or unequal variance).
d) For statistically significant results $(p<.05)$ write up each finding in standard APA format.

1. Using the grades.sav file, compare men with women (gender) for quiz1, quiz2, quiz3, quiz4, quiz5, final, total.
2. Using the grades.sav file, determine whether the following pairings produce significant differences: quiz1 with quiz2, quiz1 with quiz3, quiz1 with quiz4, quiz1 with quiz5.
3. Using the grades.sav file, compare the GPA variable (gpa) with the mean GPA of the university of 2.89 .
4. Using the divorce.sav file, compare men with women (sex) for Isatisfy, trauma, age, school, cogcope, behcope, avoicop, iq, close, locus, asq, socsupp, spiritua.
5. Using the helping3.sav file, compare men with women (gender) for age, school, income, hclose, hcontrot, sympathi, angert, hcopet, hseveret, empathyt, effict, thelpInz, tqualitz, tothelp. See the Data Files section (page 385) for meaning of each variable.
6. Using the helping3.sav file, determine whether the following pairings produce significant differences: sympathi with angert, sympathi with empathyt, empahelp with insthelp, empahelp with infhelp, insthelp with infhelp.
7. Using the helping3.sav file, compare the age variable (age) with the mean age for North Americans (33.0).
8. In an experiment, 10 participants were given a test of mental performance in stressful situations. Their scores were $2,2,4,1,4,3,0,2,7$, and 5 . Ten other participants were given the same test after they had been trained in stress-reducing techniques. Their scores were $4,4,6,0,6,5,2,3,6$, and 4 . Do the appropriate t test to determine if the group that had been trained had different mental performance scores than the group that had not been trained in stress reduction techniques. What do these results mean?
9. In a similar experiment, ten participants who were given a test of mental performance in stressful situations at the start of the study, were then trained in stress reduction techniques, and were finally given the same test again at the end of the study. In an amazing coincidence, the participants received the same scores as the participants in question 8: The first two people in the study received a score of 2 on the pretest, and a score of 4 on the posttest; the third person received a score of 4 on the pretest and 6 on the posttest; and so on. Do the appropriate t test to determine if there was a significant difference between the pretest and posttest scores. What do these results mean? How was this similar and how was this different than the results in question 1? Why?
10. You happen to know that the population mean for the test of mental performance in stressful situations is exactly three. Do a t test to determine whether the post-test scores in \#9 above (the same numbers as the
training group scores in \#8) is significantly different than three. What do these results mean? How was this similar and how was this different than the results in question 9 ? Why?

11-1

Group Statistics

	gender	N	Mean	Std. Devia- tion	Std. Error Mean
quiz1	1 Female	64	7.72	2.306	.288
	2 Male	41	7.07	2.715	.424
quiz2	1 Female	64	7.98	1.548	.194
	2 Male	41	7.98	1.753	.274
quiz3	1 Female	64	8.19	2.130	.266
	2 Male	41	7.66	2.555	.399
quiz4	1 Female	64	8.06	2.181	.273
	2 Male	41	7.39	2.397	.374
quiz5	1 Female	64	7.88	1.638	.205
	2 Male	41	7.85	1.969	.308
final	1 Female	64	62.36	7.490	.936
	2 Male	41	60.10	8.514	1.330
total	1 Female	64	102.03	13.896	1.737
	2 Male	41	98.29	17.196	2.686

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference		
		Lower							Upper		
quiz1	Equal variances assumed Equal variances not assumed		2.180	. 143	$\begin{aligned} & 1.305 \\ & 1.259 \end{aligned}$	$\begin{gathered} 103 \\ 75.304 \end{gathered}$	$\begin{aligned} & .195 \\ & .212 \end{aligned}$	$\begin{aligned} & .646 \\ & .646 \end{aligned}$	$\begin{aligned} & .495 \\ & .513 \end{aligned}$	$\begin{aligned} & -.335 \\ & -.376 \end{aligned}$	$\begin{aligned} & \hline 1.627 \\ & 1.667 \end{aligned}$
quiz2	Equal variances assumed Equal variances not assumed	1.899	. 171	$\begin{aligned} & .027 \\ & .026 \end{aligned}$	$\begin{gathered} 103 \\ 77.634 \end{gathered}$	$\begin{aligned} & .979 \\ & .979 \end{aligned}$	$\begin{aligned} & .009 \\ & .009 \end{aligned}$	$\begin{aligned} & .326 \\ & .335 \end{aligned}$	$\begin{aligned} & -.638 \\ & -.659 \end{aligned}$	$\begin{aligned} & .656 \\ & .676 \end{aligned}$	
quiz3	Equal variances assumed Equal variances not assumed	3.436	. 067	$\begin{aligned} & \hline 1.147 \\ & 1.103 \end{aligned}$	$\begin{gathered} \hline 103 \\ 74.189 \end{gathered}$	$\begin{aligned} & .254 \\ & .274 \end{aligned}$	$\begin{aligned} & .529 \\ & .529 \end{aligned}$	$\begin{aligned} & .461 \\ & .480 \end{aligned}$	$\begin{aligned} & \hline-.385 \\ & -.427 \end{aligned}$	$\begin{aligned} & 1.443 \\ & 1.485 \end{aligned}$	
quiz4	Equal variances assumed Equal variances not assumed	. 894	. 347	$\begin{aligned} & 1.482 \\ & 1.452 \end{aligned}$	$\begin{gathered} \hline 103 \\ 79.502 \end{gathered}$	$\begin{aligned} & .141 \\ & .151 \end{aligned}$	$\begin{aligned} & .672 \\ & .672 \end{aligned}$	$\begin{aligned} & .454 \\ & .463 \end{aligned}$	$\begin{aligned} & -.227 \\ & -.249 \end{aligned}$	$\begin{aligned} & 1.572 \\ & 1.594 \end{aligned}$	
quiz5	Equal variances assumed Equal variances not assumed	4.103	. 045	$\begin{aligned} & .060 \\ & .058 \end{aligned}$	$\begin{gathered} \hline 103 \\ 74.071 \end{gathered}$	$\begin{aligned} & .952 \\ & .954 \end{aligned}$	$\begin{aligned} & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & .355 \\ & .369 \end{aligned}$	$\begin{aligned} & -.682 \\ & -.715 \end{aligned}$	$\begin{aligned} & .725 \\ & .757 \end{aligned}$	
final	Equal variances assumed Equal variances not assumed	. 093	. 761	$\begin{aligned} & 1.431 \\ & 1.391 \end{aligned}$	$\begin{gathered} \hline 103 \\ 77.417 \end{gathered}$	$\begin{aligned} & .156 \\ & .168 \end{aligned}$	$\begin{aligned} & 2.262 \\ & 2.262 \end{aligned}$	$\begin{aligned} & 1.581 \\ & 1.626 \end{aligned}$	$\begin{aligned} & -.874 \\ & -.976 \end{aligned}$	$\begin{aligned} & 5.397 \\ & 5.500 \end{aligned}$	
total	Equal variances assumed	2.019	. 158	1.224	103	. 224	3.739	3.053	-2.317	9.794	

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference		
		Lower							Upper		
quiz1	Equal variances assumed Equal variances not assumed		2.180	. 143	$\begin{aligned} & 1.305 \\ & 1.259 \end{aligned}$	$\begin{gathered} 103 \\ 75.304 \end{gathered}$	$\begin{aligned} & \hline .195 \\ & .212 \end{aligned}$	$\begin{aligned} & \hline .646 \\ & .646 \end{aligned}$	$\begin{aligned} & \hline .495 \\ & .513 \end{aligned}$	$\begin{aligned} & \hline-.335 \\ & -.376 \end{aligned}$	$\begin{aligned} & 1.627 \\ & 1.667 \end{aligned}$
quiz2	Equal variances assumed Equal variances not assumed	1.899	. 171	$\begin{aligned} & .027 \\ & .026 \end{aligned}$	$\begin{gathered} \hline 103 \\ 77.634 \end{gathered}$	$\begin{aligned} & \hline .979 \\ & .979 \end{aligned}$	$\begin{aligned} & \hline .009 \\ & .009 \end{aligned}$	$\begin{aligned} & .326 \\ & .335 \end{aligned}$	$\begin{aligned} & \hline-.638 \\ & -.659 \end{aligned}$	$\begin{aligned} & \hline .656 \\ & .676 \end{aligned}$	
quiz3	Equal variances assumed Equal variances not assumed	3.436	. 067	$\begin{aligned} & 1.147 \\ & 1.103 \end{aligned}$	$\begin{array}{\|c\|} \hline 103 \\ 74.189 \end{array}$	$\begin{aligned} & .254 \\ & .274 \end{aligned}$	$\begin{aligned} & .529 \\ & .529 \end{aligned}$	$\begin{aligned} & .461 \\ & .480 \end{aligned}$	$\begin{aligned} & -.385 \\ & -.427 \end{aligned}$	$\begin{aligned} & 1.443 \\ & 1.485 \end{aligned}$	
quiz4	Equal variances assumed Equal variances not assumed	. 894	. 347	$\begin{aligned} & 1.482 \\ & 1.452 \end{aligned}$	$\begin{gathered} \hline 103 \\ 79.502 \end{gathered}$	$\begin{aligned} & .141 \\ & .151 \end{aligned}$	$\begin{aligned} & .672 \\ & .672 \end{aligned}$	$\begin{aligned} & .454 \\ & .463 \end{aligned}$	$\begin{aligned} & \hline-.227 \\ & -.249 \end{aligned}$	$\begin{aligned} & 1.572 \\ & 1.594 \end{aligned}$	
quiz5	Equal variances assumed Equal variances not assumed	4.103	. 045	$\begin{aligned} & \hline .060 \\ & .058 \end{aligned}$	$\begin{gathered} \hline 103 \\ 74.071 \end{gathered}$	$\begin{aligned} & .952 \\ & .954 \end{aligned}$	$\begin{aligned} & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & .355 \\ & .369 \end{aligned}$	$\begin{aligned} & -.682 \\ & -.715 \end{aligned}$	$\begin{aligned} & .725 \\ & .757 \end{aligned}$	
final	Equal variances assumed Equal variances not assumed	. 093	. 761	$\begin{aligned} & 1.431 \\ & 1.391 \end{aligned}$	$\begin{array}{\|c\|} \hline 103 \\ 77.417 \end{array}$	$\begin{aligned} & .156 \\ & .168 \end{aligned}$	$\begin{aligned} & \hline 2.262 \\ & 2.262 \end{aligned}$	$\begin{aligned} & 1.581 \\ & 1.626 \end{aligned}$	$\begin{aligned} & \hline-.874 \\ & -.976 \end{aligned}$	$\begin{aligned} & 5.397 \\ & 5.500 \end{aligned}$	
total	Equal variances assumed Equal variances not assumed	2.019	. 158	$\begin{aligned} & 1.224 \\ & 1.169 \end{aligned}$	$\begin{gathered} \hline 103 \\ 72.421 \end{gathered}$	$\begin{aligned} & .224 \\ & .246 \end{aligned}$	3.739 3.739	3.053 3.198	$\begin{aligned} & \hline-2.317 \\ & -2.637 \end{aligned}$	$\begin{array}{\|c\|} \hline 9.794 \\ 1.011 \mathrm{E} \\ 1 \end{array}$	

34 IBM SPSS Statistics 23 Step by Step Answers to Selected Exercises

No results are statistically significant

11-2
Paired Samples Statistics

		Mean	N	Std. Devia- tion	Std. Error Mean
Pair 1 quiz1	7.47	105	2.481	.242	
Pair 2 quiz2	7.98	105	1.623	.158	
	quiz1	7.47	105	2.481	.242
Pair 3	quiz1	7.98	105	2.308	.225
	quiz4	7.47	105	2.481	.242
Pair 4 quiz1	7.47	105	2.280	.223	
	quiz5	7.87	105	2.481	.242
		1.765	.172		

Paired Samples Test

	Paired Differences						df	Sig. (2tailed)
	Mean	Std. Devia-	Std. Error	95\% Confiden	erval of ference			
		tion	Mean	Lower	Uppert			
Pair 1 quiz1 quiz2	-. 514	1.835	. 179	-. 869	-. 159	-2.872	104	. 005
Pair 2 quiz1 quiz3	-. 514	1.287	. 126	-. 763	-. 265	-4.095	104	. 000
$\begin{array}{rr} \text { Pair } 3 & \text { quiz1 } \\ & \text { quiz4 } \end{array}$	-. 333	1.405	. 137	-. 605	-. 061	-2.431	104	. 017

Paired Samples Test

	Paired Differences						df	Sig.tailed)	
	Mean	Std. Deviation	Std. Error Mean	95\% Confiden	erval of erence				
				Lower	Uppert				
Pair $1 \begin{array}{rr} & \text { quiz1 } \\ & \text { quiz2 }\end{array}$	-. 514	1.835	. 179	-. 869	-. 159	-2.872	104		. 005
Pair 2 quiz1 quiz3	-. 514	1.287	. 126	-. 763	-. 265	-4.095	104		0.000
Pair 3 quiz1 quiz4	-. 333	1.405	. 137	-. 605	-. 061	-2.431	104		. 017
$\text { Pair } 4 \text { quiz1 } \begin{aligned} \text { quiz5 } \end{aligned}$	-. 400	2.204	. 215	-. 827	. 027	-1.860	104		. 066

1. Students scored significantly higher on quiz $2(M=7.98, S D=1.62)$ than on quiz $1(M=7.47, S D=2.48), t(104)=-2.87, p=.005$.
2. Students scored significantly higher on quiz $3(M=7.98, S D=2.31)$ than on quiz $1(M=7.47, S D=2.48), t(104)=-4.10, p<.001$.
[Notice that the mean values are identical with the first comparison but quiz 1 with quiz 3 pairing produces a much stronger result. This is due to a much narrower standard deviation for the second comparison (1.29) than for the first (1.84)]
3. Students scored significantly higher on quiz $4(M=7.80, S D=2.28)$ than on quiz $1(M=7.47, S D=2.48), t(104)=-2.43, p=.017$.

11-3

The values do not differ significantly.

11-4

Women ($M=4.53, S D=.88$) are significantly more likely to practice cognitive coping than men $(M=4.28, S D=4.28), t(227)=2.08, p=.038$.
Men ($M=2.92, S D=.96$) are significantly more likely to practice avoidant coping than women $(M=2.55, S D=.84), t(227)=-3.13, p=.002$.
Women $(M=3.51, S D=.94)$ are significantly more likely to experience non-sexual physical closeness than men $(M=3.23, S D=.93)$, $t(227)=2.26, p=.025$.

36 IBM SPSS Statistics 23 Step by Step Answers to Selected Exercises

Women $(M=3.44, S D=2.74)$ are significantly more likely to have a positive attributional style than men $(M=2.62, S D=2.69), t(227)=2.24, p=$. 023.

Women ($M=3.67, S D=.96$) are significantly more likely to receive social support than men $(M=3.37, S D=.78), t(227)=2.36, p=.009$.
Women $(M=4.80, S D=1.08)$ have significantly higher personal spirituality than men $(M=4.14, S D=1.29), t(227)=4.20, p<.001$.

11-8

Group Statistics

					Std. Error Mean
PERFORMA	Condrol	N	Mean	Std. Deviation	2.055
	Treatment (training)	10	3.00	.650	
	10	4.00	1.944	.615	

Independent Samples Test									
	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
$\begin{array}{ll}\text { PERFORMA } & \begin{array}{l}\text { Equal variances } \\ \text { assumed }\end{array}\end{array}$. 134	. 718	-1.118	18	. 278	-1.00	. 894	-2.879	. 879
Equal variances not assumed			-1.118	17.945	. 278	-1.00	. 894	-2.880	. 880

There was not a significant difference between the mean for the treatment group ($M=4.00, S D=1.94$) and the control group ($M=3.00, S D=2.06$), $t(18)=1.12, p>.05$).

11-9

Although the mean for the treatment condition $(M=4.00, S D=1.94)$ appeared to be higher than the mean for the control condition ($M=3.00, S D=2.06$), this difference was not statistically significant $(t(9)=2.24, p$ $>.05)$.

Chapter 12: The One-Way ANOVA Procedure

Perform one-way ANOVAs with the specifications listed below. If there are significant findings write them up in APA format (or in the professional format associated with your discipline). Examples of correct APA format are shown on the web site. Further, notice that the final five problems make use of the helping3.sav data file. This data set (and all data files used in this book) is also available for download at the website listed above. For meaning and specification of each variable, make use of Data Files section of this book beginning on page 385 .

1. File: grades.sav; dependent variable: quiz4; factor: ethnic (2,5); use LSD procedure for post hoc comparisons, compute two planned comparisons. This problem asks you to reproduce the output on pages 170172. Note that you will need to perform a select-cases procedure (see page 166) to delete the " $1=$ Native" category.
2. File: helping3.sav; dependent variable: tothelp; factor: ethnic (1,4); use LSD procedure for post hoc comparisons, compute two planned comparisons.
3. File: helping3.sav; dependent variable: tothelp; factor: problem (1,4); use LSD procedure for post hoc comparisons, compute two planned comparisons.
4. File: helping3.sav; dependent variable: angert; factor: occupat (1,6); use LSD procedure for post hoc comparisons, compute two planned comparisons.
5. File: helping3.sav; dependent variable: sympathi; factor: occupat (1,6); use LSD procedure for post hoc comparisons, compute two planned comparisons.
6. File: helping3.sav; dependent variable: effict; factor: ethnic (1,4); use LSD procedure for post hoc comparisons, compute two planned comparisons.

12-1

Descriptives

quiz4

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
Asian	20	8.35	1.531	. 342	7.63	9.07	6	10
Black	24	7.75	2.132	. 435	6.85	8.65	4	10
White	45	8.04	2.256	. 336	7.37	8.72	2	10
Hispanic	11	6.27	3.319	1.001	4.04	8.50	2	10
Total	100	7.84	2.286	. 229	7.39	8.29	2	10

ANOVA
quiz4

			Sum of Squares	df	Mean Square	F	Sig.
Between Groups	(Combined)		34.297	3	11.432	2.272	. 085
	Linear Term	Unweighted	26.464	1	26.464	5.258	. 024
		Weighted	14.484	1	14.484	2.878	. 093
		Deviation	19.813	2	9.906	1.968	. 145
Within Groups			483.143	96	5.033		
Total			517.440	99			

Contrast Coefficients

Contrast	ethnicity				
	Asian	Black	White	Hispanic	
	1	1	-1	-1	
2	1	1	1	-3	

		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
quiz4	Assume equal variances	1	1.78	1.015	1.756	96	.082
		2	5.33	2.166	2.459	96	.016
	Does not assume equal variances	1	1.78	1.192	1.495	19.631	.151
	2	5.33	3.072	1.734	10.949	.111	

Post Hoc Tests

Multiple Comparisons
Dependent Variable: quiz4

(I) ethnicity (J) ethnicity		Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval		
		Lower Bound			Upper Bound		
Asian	Black		.600	. 679	. 379	-. 75	1.95
	White	. 306	. 603	. 613	-. 89	1.50	
	Hispanic	2.077^{*}	. 842	. 015	. 41	3.75	
Black	Asian	-. 600	. 679	. 379	-1.95	. 75	
	White	-. 294	. 567	. 605	-1.42	. 83	
	Hispanic	1.477	. 817	. 074	-. 14	3.10	
White	Asian	-. 306	. 603	. 613	-1.50	. 89	
	Black	. 294	. 567	. 605	-. 83	1.42	
	Hispanic	1.772^{*}	. 755	. 021	. 27	3.27	
Hispanic	Asian	-2.077^{*}	. 842	. 015	-3.75	-. 41	
	Black	-1.477	. 817	. 074	-3.10	. 14	
	White	-1.772^{*}	. 755	. 021	-3.27	-. 27	

*. The mean difference is significant at the 0.05 level.

A one-way ANOVA revealed marginally significant ethnic differences for scores on Quiz 4, $F(3,96)=2.27$, $p=.085$. Post hoc comparisons using the LSD procedure with an alpha value of .05 found that Whites ($M=$ 8.04) and Asians ($M=8.35$) scored significantly higher than Hispanics $(M=6.27)$.

12-2

Descriptives

COMBINED HELP MEASURE--QUANTITY \& QUALITY

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
WHITE	293	-. 0006	. 75658	. 04420	-. 0876	. 0864	-2.88	1.58
BLACK	50	. 1611	. 67714	. 09576	-. 0314	. 3535	-1.72	1.69
HISPANIC	80	. 0339	. 70614	. 07895	-. 1233	. 1910	-2.02	1.39
ASIAN	70	-. 1821	. 76336	. 09124	-. 3642	-. 0001	-1.85	1.31
Total	493	-. 0044	. 74478	. 03354	-. 0703	. 0615	-2.88	1.69

ANOVA

COMBINED HELP MEASURE--QUANTITY \& QUALITY

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.702	3	1.234	2.241	.083
Within Groups	269.212	489	.551		
Total	272.913	492			

Contrast Coefficients

Contr ast	ethnic			
	WHITE	BLACK	HISPANIC	ASIAN
1	3	-1	-1	-1
2	1	-1	-1	1

Contrast Tests							
		Contr ast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
COMBINED HELP MEASURE--QUANTITY \& QUALITY	Assume equal variances	1	-. 0146	. 20656	-. 071	489	. 944
		2	-. 3777	. 16624	-2.272	489	. 024
	Does not assume equal variances	1	$-.0146$	$.20325$	$-.072$	399.562	$.943$
		2	-. 3777	. 16025	-2.357	204.483	. 019

Post Hoc Tests
COMBINED HELP MEASURE-QUANTITY \& QUALITY LSD

(1) ethnic	(J) ethnic	$\begin{gathered} \text { Mean } \\ \text { Difference (I- } \\ \mathrm{J}) \\ \hline \end{gathered}$	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
WHITE	BLACK	-. 16168	. 11353	. 155	-. 3848	. 0614
	HISPANIC	-. 03445	. 09360	. 713	-. 2184	. 1495
	ASIAN	. 18154	. 09871	. 067	-. 0124	. 3755
BLACK	WHITE	. 16168	. 11353	. 155	-. 0614	. 3848
	HISPANIC	. 12723	. 13376	. 342	-. 1356	. 3900
	ASIAN	. $34322 *$. 13739	. 013	. 0733	. 6132
HISPANIC	WHITE	. 03445	. 09360	. 713	-. 1495	. 2184
	BLACK	-. 12723	. 13376	. 342	-. 3900	. 1356
	ASIAN	. 21599	. 12144	. 076	-. 0226	. 4546
ASIAN	WHITE	-. 18154	. 09871	. 067	-. 3755	. 0124
	BLACK	-.34322*	. 13739	. 013	-. 6132	-. 0733
	HISPANIC	-. 21599	. 12144	. 076	-. 4546	. 0226

*. The mean difference is significant at the 0.05 level.

A one-way ANOVA revealed marginally significant ethnic differences for the total amount of help given, $F(3,489)=2.24, p=.083$. Post hoc comparisons using the LSD procedure found that Blacks ($M=.16, S D=$.68) provide significantly more total help than Asians ($M=-.18, S D=.76$), $p<.013$.

12-3

A one-way ANOVA revealed marginally significant ethnic differences for the total amount of help given, $F(3,489)=2.24, p=.083$. Post hoc comparisons using the LSD procedure found that Blacks $(M=.16, S D=$.68) provide significantly more total help than Asians ($M=-.18, S D=.76$), $p<.013$.

12-4

A one-way ANOVA revealed marginally significant differences for the amount of anger experienced based on the occupation of the helper, $F(5,531)=1.982, p=.080$. Post hoc comparisons using the LSD procedure found greater anger was experienced by those who chose not to state their occupation ($M=2.75, S D=1.53$) than for either unemployed/retired persons $(M=1.80, S D=1.26)$ or professional persons $(M=2.06, S D=$ 1.50). It was also found that service/support workers ($M=2.37, S D=1.63$) experienced more anger than those who were unemployed ($M=1.80, S D=1.26$).

Chapter 14: Three-Way ANOVA

For the first five problems below, perform the following:

- Print out the cell means portion of the output.
- Print out the ANOVA results (main effects, interactions, and so forth).
- Interpret and write up correctly (APA format) all main effects and interactions.
- Create multiple-line graphs (or clustered bar charts) for all significant interactions.

1. File: helping3.sav; dependent variable: tothelp; independent variables: gender, problem.
2. File: helping3.sav; dependent variable: tothelp; independent variables: gender, income.
3. File: helping3.sav; dependent variable: hseveret; independent variables: ethnic, problem.
4. File: helping3.sav; dependent variable: thelpInz; independent variables: gender, problem; covariate: tqualitz.
5. File: helping3.sav; dependent variable: thelpInz; independent variables: gender, income, marital.
6. In an experiment, participants were given a test of mental performance in stressful situations. Some participants were given no stress-reduction training, some were given a short stress-reduction training session, and some were given a long stress-reduction training session. In addition, some participants who were tested had a low level of stress in their lives, and others had a high level of stress in their lives. Perform an ANOVA on these data (listed below). What do the results mean?

Training:	None										Short				
Life Stress:	High					Low					High				
Performance Score:	5	4	2	5	4	4	4	6	6	2	6	4	5	4	3
Training:	Short					Long									
Life Stress:	Low					High					Low				
Performance Score:	7	6	6	5	7	5	5	5	3	5	7	7	9	9	8

7. In an experiment, participants were given a test of mental performance in stressful situations. Some participants were given no stress-reduction training, and some were given a stress-reduction training session. In addition, some participants who were tested had a low level of stress in their lives, and others had a high level of stress in their lives. Finally, some participants were tested after a full night's sleep, and some were tested after an all-night study session on three-way ANOVA. Perform an ANOVA on these data (listed below question 8 ; ignore the "caffeine" column for now). What do these results mean?
8. In the experiment described in problem 7, data were also collected for caffeine levels. Perform an ANOVA on these data (listed below). What do these results mean? What is similar to and different than the results in question 7 ?

Training?	Stress Level	Sleep/Study	Performance	Caffeine
No	Low	Sleep	8	12
No	Low	Sleep	9	13
No	Low	Sleep	8	15
No	Low	Study	15	10
No	Low	Study	14	10
No	Low	Study	15	11
No	High	Sleep	10	14
No	High	Sleep	11	15
No	High	Sleep	11	16
No	High	Study	18	11
No	High	Study	19	10
No	High	Study	19	11
Yes	Low	Sleep	18	11
Yes	Low	Sleep	17	10
Yes	Low	Sleep	18	11
Yes	Low	Study	10	4
Yes	Low	Study	10	4
Yes	Low	Study	11	4
Yes	High	Sleep	22	14
Yes	High	Sleep	22	14
Yes	High	Sleep	23	14
Yes	High	Study	13	5
Yes	High	Study	13	5
Yes	High	Study	12	4

14-1

Between-Subjects Factors			
Gender	1	Value Label	N
	2	FEMALE	294
TYPE OF PROBLEM EXPERI-	1	MALE	199
ENCED		GOAL DISRUP-	207
	2	TIVE	
	3	RELATIONAL	189
	4	BREAK	84
		ILLNESS	13

Descriptive Statistics

Dependent Variable: COMBINED HELP MEASURE--QUANTITY \& QUALITY

gender	TYPE OF PROBLEM EXPERIENCED	Mean	Std. Deviation	N
FEMALE	GOAL DISRUPTIVE	-. 0299	. 68184	105
	RELATIONAL BREAK	. 1516	. 72524	132
	ILLNESS	. 2901	. 71572	50
	CATASTROPHIC	. 3449	. 62825	7
	Total	. 1149	. 71313	294
MALE	GOAL DISRUPTIVE	-. 2752	. 77680	102
	RELATIONAL BREAK	-. 0802	. 68315	57
	ILLNESS	-. 1298	. 82601	34
	CATASTROPHIC	. 1820	. 56134	6
	Total	-. 1807	. 75724	199
Total	GOAL DISRUPTIVE	-. 1507	. 73870	207
	RELATIONAL BREAK	. 0817	. 71895	189
	ILLNESS	. 1201	. 78529	84
	CATASTROPHIC	. 2697	. 57947	13
	Total	-. 0044	. 74478	493

Tests of Between-Subjects Effects
Dependent Variable: COMBINED HELP MEASURE--QUANTITY \& QUALITY

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	17.019^{a}	7	2.431	4.608	.000	.062
Intercept	.510	1	.510	.966	.326	.002
gender	2.785	1	2.785	5.278	.022	.011
problem	5.879	3	1.960	3.714	.012	.022
gender * problem	.581	3	.194	.367	.777	.002
Error	255.894	485	.528			
Total	272.923	493				
Corrected Total	272.913	492				

a. R Squared $=.062($ Adjusted R Squared $=.049)$

Estimated Marginal Means

1. Grand Mean

Dependent Variable: COMBINED HELP MEASURE--QUANTITY \&
QUALITY

Mean		95% Confidence Interval	
	Std. Error	Lower Bound	Upper Bound
.057		-.057	.170

2. gender

Dependent Variable: COMBINED HELP MEASURE--QUANTITY \& QUALITY

gender			95% Confidence Interval	
	Mean	Std. Error	Lower Bound	Upper Bound
	.189	.077	.038	.341
MALE	-.076	.086	-.244	.093

3. TYPE OF PROBLEM EXPERIENCED

Dependent Variable: COMBINED HELP MEASURE--QUANTITY \& QUALITY

TYPE OF PROBLEM EXPERIENCED	Mean	Std. Error	95\% Confidence Interval	
			Lower Bound	Upper Bound
GOAL DISRUPTIVE	-. 153	. 050	-. 252	-. 053
RELATIONAL BREAK	. 036	. 058	-. 077	. 149
ILLNESS	. 080	. 081	-. 078	. 239
CATASTROPHIC	. 263	. 202	-. 134	. 660

4. gender * TYPE OF PROBLEM EXPERIENCED

Dependent Variable: COMBINED HELP MEASURE--QUANTITY \& QUALITY

gender	TYPE OF PROBLEM EXPERIENCED	Mean	Std. Error	95\% Confidence Interval	
				Lower Bound	Upper Bound
FEMALE	GOAL DISRUPTIVE	-. 030	. 071	-. 169	. 109
	RELATIONAL BREAK	. 152	. 063	. 027	. 276
	ILLNESS	. 290	. 103	. 088	. 492
	CATASTROPHIC	. 345	. 275	-. 195	. 884
MALE	GOAL DISRUPTIVE	-. 275	. 072	-. 416	-. 134
	RELATIONAL BREAK	-. 080	. 096	-. 269	. 109
	ILLNESS	-. 130	. 125	-. 375	. 115
	CATASTROPHIC	. 182	. 297	-. 401	. 765

Estimated Marginal Means of COMBINED HELP MEASURE--QUANTITY \& QUALITY

(The chart (left) is included for demonstration only. There is no significant interaction in the present results.)

A 2-way ANOVA was conducted to determine the influence of gender and type of problem on the total amount of help given. Results showed a significant main effect for gender in which women ($M=.12$) gave slightly more help than men ($M=-.18$), $F(1,529)=5.54, p=.019, \eta^{2}=.01$. There was also a significant (but small) main effect for problem type, $F(3,529)=1.65, p=$ $.023, \eta^{2}=.02$. There was no significant gender by problem type interaction.

A 2-way ANOVA was conducted to determine the influence of gender and level of income on the total amount of help given. Results showed a significant main effect for gender in which women ($M=.16$, $S E=.04)$ gave more help than men ($M=-$ $.22, S E=.05), F(1,527)=30.14, p<.001$, $\eta^{2}=.05$. There was also a significant main effect for level of income, $F(4,527)=$ $3.15, p=.014, \eta^{2}=.02$. Post hoc comparisons using the LSD procedure revealed that subjects unwilling to state their income gave less total help ($M=-.18, S E=.06$) than subjects making less than 15,000 per year ($M=.04, S E=.08$) or subjects making more than 50,000 per year ($M=.16, S E$ $=.08$). There was also a significant gender by income interaction. $F(4,527)=2.60, p=.035, \eta^{2}=.02$. While for all income levels, women helped more than men, for participants making less than 25,000 , the gender discrepancy was large, while for subjects making more than 25,000 , the gender discrepancy was small.

14-3

A two-way ANOVA was conducted to determine the influence of ethnicity and problem type on the severity rating of problems. Problem type had a significant effect on the severity ratings, $F(3,518)=4.96, p=.002$, $\eta^{2}=.03$. Post hoc comparisons using the least significant differences procedure with an alpha value of .05 revealed that the severity rating for goal-disruptive problems ($M=4.58, S D=1.66$) was significantly less than for relational problems ($M=5.15, S D=1.42$), illness problems ($M=5.70, S D=1.44$), or catastrophic problems ($M=6.00, S D=1.26$). Also illness problems were rated more severe than relational problems. There was no significant ethnic by problem type interaction.

14-6

Descriptive Statistics

Dependent Variable: PERFORMA

TRAINING	LIFESTRE	Mean	Std. Deviation	N
None	High	4.00	1.225	5
	Low	4.40	1.673	5
	Total	4.20	1.398	10
Short	High	4.40	1.140	5
	Low	6.20	.837	5
	Total	5.30	1.337	10
Long	High	4.60	.894	5
	Low	8.00	1.000	5
	Total	6.30	2.003	10
Total	High	4.33	1.047	15
	Low	6.20	1.897	15
	Total	5.27	1.780	30

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ${ }^{\text {a }}$
Corrected Model	$59.467^{\text {b }}$	5	11.893	8.810	. 000	. 647	44.049	. 999
Intercept	832.133	1	832.133	616.395	. 000	. 963	616.395	1.000
TRAINING	22.067	2	11.033	8.173	. 002	. 405	16.346	. 934
LIFESTRE	26.133	1	26.133	19.358	. 000	. 446	19.358	. 988
TRAINING * LIFESTRE	11.267	2	5.633	4.173	. 028	. 258	8.346	. 678
Error	32.400	24	1.350					
Total	924.000	30						
Corrected Total	91.867	29						

a. Computed using alpha $=.05$
b. R Squared $=.647$ (Adjusted R Squared $=.574$)

There was a main effect of training: People who had a long training session $(M=6.30, S D=2.00)$ performed better than people who had a short training session ($M=5.30, S D=1.34$), who in turn did better than those who had no training session $\left(M=4.20, S D=1.40 ; F(2,24)=8.17, p=.002, \eta^{2}=.41\right)$.
There was a main effect of level of life stress: People with low levels of life stress ($M=6.20, S D=1.90$) performed better than people with high levels of life stress ($M=4.33, S D=1.05 ; F(1,24)=19.36, p<.001$, $\left.\eta^{2}=.45\right)$.
There was an interaction between training and level of life stress, as displayed in this graph $(F(2,24)=4.17$, $p=.028, \eta^{2}=.26$):

Note that for those with low life stress, the amount of training seems to make a big difference. For those with high life stress, the impact of training is minimal.

There was a main effect for training: Participants who received training performed better ($M=15.75, S D=$ 4.86) than participants who did not receive training ($M=13.08, S D=4.14$), $F(1,16)=128.00, p<.001$, $\eta^{2}=.89$).
There was a main effect of stress level: Participants with high stress levels performed better ($M=16.08, S D$ $=4.89)$ than those with low stress levels $\left.(M=12.75, S D=3.85), F(1,16)=200.00, p<.001, \eta^{2}=.93\right)$.
There was main effect on sleeping versus studying all night: People who slept performed somewhat better ($M=14.75, S D=5.83$) than those who didn't sleep $(M=14.08, S D=3.23), F(1,16)=8.00, p=.012$, $\eta^{2}=.33$).
There was no significant interaction effect between training and stress level $(F(1,16)=.50, p>.05$, $\eta^{2}=.03$).
There was a significant interaction between training and sleeping versus studying $(F(1,16)=1104.50$, $p<.001, \eta^{2}=.99$): For those with no training, people who slept performed worse ($M=9.50, S D=1.38$) than those who studied $(M=16.67, S D=2.25)$. For those with training, however, people who slept performed better ($M=20.00, S D=2.61$) than people who studied ($M=11.50, S D=1.38$).
There was no significant interaction between stress level and sleeping versus studying $(F(1,16)=.50$, $\mathrm{p}>.05, \eta^{2}=.03$).
There was a significant three-way interaction between training, stress level, and sleeping versus studying $\left(F(1,16)=18.00, p=.001, \eta^{2}=.53\right)$.
For those who slept, they performed better with high stress levels, and better with training. A post hoc test could determine whether the difference between high and low stress levels was greater in the training condition than in the no training condition.
For those who didn't sleep, they performed better with high stress levels and better without training. A post hoc test could determine whether the performance gain for the high stress level participants was greater in the no training condition than in the training condition.

Chapter 15: Simple Linear Regression

1. Use the anxiety.sav file for exercises that follow (downloadable at the address above).

Perform the $4 \mathrm{a}-5 \mathrm{a}$ sequences on pages 204 and 205.

- Include output in as compact a form as is reasonable
- Write the linear equation for the predicted exam score
- Write the quadratic equation for the predicted exam score

For subjects numbered 5,13, 42, and 45

- Substitute values into the two equations and solve. Show work on a separate page.
- Then compare in a small table (shown below and similar to that on page 202)
\rightarrow The anxiety score for each subject
\rightarrow Linear equation results,
\rightarrow Quadratic equation results, and
\rightarrow Actual exam scores for sake of comparison.

subject \#	anxiety score	predicted linear score	predicted quadratic score	actual exam score
5				
13				
42				
45				

2. Now using the divorce.sav file, test for linear and curvilinear relations between:

- physical closeness (close) and life satisfaction (Isatisy)
- attributional style (asq) and life satisfaction (Isatisy)

Attributional style, by the way, is a measure of optimism—a low score is "pessimistic" and a high score is "optimistic".

Print graphs and write linear and quadratic equations for both.
For each of the three analyses in problems 3 and 4:

- Print out the results
- Box the Multiple R,
- Circle the R Square,
- Underline the three (3) B values, and
- Double underline the three (3) Sig of T values.

In a single sentence (just once, not for each of the 3 problems) identify the meaning of each of the final four (4) bulleted items above.
3. First, perform step 5b (p. 206) demonstrating the influence of anxiety and anxiety squared (anxiety2) on the exam score (exam).
4. Now, complete similar procedures for the two relationships shown in problem 2 (from the divorce.sav file) and perform the 5 steps bulleted above: Specifically,

- the influence of closeness (close) and closeness squared (close2) on life satisfaction (Isatisy), and
- the influence of attributional style (asq) and the square of attributional style (asq2) on life satisfaction (Isatisy).

5. A researcher is examining the relationship between stress levels and performance on a test of cognitive performance. She hypothesizes that stress levels lead to an increase in performance to a point, and then increased stress decreases performance. She tests ten participants, who have the following levels of stress: $10.94,12.76,7.62,8.17,7.83,12.22,9.23,11.17,11.88$, and 8.18 . When she tests their levels of mental performance, she finds the following cognitive performance scores (listed in the same participant order as above): $5.24,4.64,4.68,5.04,4.17,6.20,4.54,6.55,5.79$, and 3.17. Perform a linear regression to examine the relationship between these variables. What do these results mean?
6. The same researcher tests ten more participants, who have the following levels of stress: $16,20,14,21$, $23,19,14,20,17$, and 10 . Their cognitive performance scores are (listed in the same participant order): $5.24,4.64,4.68,5.04,4.17,6.20,4.54,6.55,5.79$, and 3.17. (Note that in an amazing coincidence, these participants have the same cognitive performance scores as the participants in Question 5; this coincidence may save you some typing.) Perform a linear regression to examine the relationship between these variables. What do these results mean?
7. Create a scatterplot (see Chapter 5) of the variables in Question 6. How do results suggest that linear regression might not be the best analysis to perform?
8. Perform curve estimation on the data from Question 6. What does this tell you about the data that you could not determine from the analysis in Question 6?
9. What is different about the data in Questions 5 and 6 that leads to different results?

15-1

Dependent Variable: exam

Equation	Model Summary					Parameter Estimates		
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	. 238	22.186	1	71	. 000	64.247	2.818	
Quadratic	. 641	62.525	2	70	. 000	30.377	18.926	-1.521

The independent variable is anxiety.

Linear: $\mathrm{EXAM}_{(\text {pred })}=64.247+2.818$ (ANXIETY)
Quadratic: $\operatorname{EXAM}_{(\text {pred })}=30.377+18.926($ ANXIETY $)-1.521(\text { ANXIETY })^{2}$

subject \#	Anxiety score	predicted linear score	predicted quadratic score	actual score
5	3.0	72.7	73.5	70
13	4.0	75.5	81.7	82
42	6.5	82.6	89.1	98
45	9.0	89.6	77.6	79

15-2

Linear: $^{\text {LSATISFY }_{(\text {pred })}}=4.571+.08($ ASQ $)$
Quadratic: \quad LSATISFY $_{\text {(pred) }}=4.587+.051($ ASQ $)+.004(\mathrm{ASQ})^{2}$

15-3

Model Summary

Model	R	R Square	Adjusted Square	RStd. Error of the Estimate
1	.801		64	

a. Predictors: (Constant), square of anxiety, anxiety

Multiple R: The multiple correlation between the dependent variable and (in this case) the two independent variables.

15-5

> Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.632^{\mathrm{a}}$.399	.324	.82256

a. Predictors: (Constant), STRESS

ANOVA ${ }^{\text {b }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.594	1	3.594	5.312	. $050^{\text {a }}$
	Residual	5.413	8	. 677		
	Total	9.007	9			

a. Predictors: (Constant), STRESS
b. Dependent Variable: PERFORMA

These results suggest that there is a significant relationship between stress and performance $\left(\mathrm{R}^{2}=.399\right.$, $\mathrm{F}(1,8)=5.31, \mathrm{p}=.05$). Note, though, that we have tested for a linear relationship-which is not what the research hypothesized.

15-8

Notice that the linear regression information has (within rounding error) the same information as calculated by the linear regression procedure in exercise 5, above. That model doesn't fit the data well. The quadratic equation, however, fits the data much better $\left(R^{2}=.69, F(1,7)=7.68, p=.017\right)$. This tells us that the data is predicted much better from a quadratic equation (which will form an upside-down "U" shape) than a linear one.

15-9

The data in question 4 is (roughly) linear; the data in question 5 is curvilinear.

Chapter 16: Multiple Regression Analysis

Use the helping3.sav file for the exercises that follow (downloadable at the address shown above).

Conduct the following THREE regression analyses:
Criterion variables:

1. thelpInz: Time spent helping
2. tqualitz: Quality of the help given
3. tothelp: A composite help measure that includes both time and quality

Predictors: (use the same predictors for each of the three dependent variables)
age: range from 17 to 89
angert: Amount of anger felt by the helper toward the needy friend
effict: Helper's feeling of self-efficacy (competence) in relation to the friend's problem
empathyt: Helper's empathic tendency as rated by a personality test
gender: 1 = female, 2 = male
hclose: Helper's rating of how close the relationship was
hcontrot: helper's rating of how controllable the cause of the problem was
hcopet: helper's rating of how well the friend was coping with his or her problem
hseveret: helper's rating of the severity of the problem
obligat: the feeling of obligation the helper felt toward the friend in need
school: coded from 1 to 7 with 1 being the lowest education, and 7 the highest (> 19 years)
sympathi: The extent to which the helper felt sympathy toward the friend
worry: amount the helper worried about the friend in need

- Use entry value of .06 and removal value of .11 .
- Use stepwise method of entry.

Create a table (example below) showing for each of the three analyses Multiple $\mathrm{R}, \mathrm{R}^{2}$, then each of the variables that significantly influence the dependent variables. Following the R^{2}, List the name of each variable and then (in parentheses) list its β value. Rank order them from the most influential to least influential from left to right. Include only significant predictors.

Create a table (example below) showing for each of the three analyses Multiple R, R^{2}, then each of the variables that significantly influence the dependent variables. Following the R^{2}, List the name of each variable and then (in parentheses) list its \square value. Rank order them from the most influential to least influential from left to right. Include only significant predictors.

Dependent Variable	Multiple R	R^{2}	$1^{\text {st }} \operatorname{var}(\beta)$	$2^{\text {nd }} \operatorname{var}(\beta)$	$3^{\text {rd }} \operatorname{var}(\beta)$	$4^{\text {th }} \operatorname{var}(\beta)$	$5^{\text {th }} \operatorname{var}(\beta)$	$6^{\text {th }} \operatorname{var}(\beta)$								
Time help- ing																
Help quality									\quad							
:---	:---	:---	:---	:---	:---	:---										
Total help																

16-1

Dependent Variable	Multiple R	R^{2}	$1^{\text {st }} \operatorname{var}(\beta)$	$2^{\text {nd }} \operatorname{var}(\beta)$	$3^{\text {rd }} \operatorname{var}(\beta)$	$4^{\text {th }} \operatorname{var}(\beta)$	$5^{\text {th }} \operatorname{var}(\beta)$	$6^{\text {th }} v a r$ (β)
1. Time help- ing	.576 .332	Efficacy $(.330)$	Severity $(.214)$	Worry $(.153)$	Closeness $(.113)$	Anger $(.110)$	Gender $(-.096)$	

16-4

Two different models were examined. The first model, Performance $=7.688+2.394 \times$ Stress + Residual, fit the data fairly well $\left(R^{2}=.49, F(1,8)=7.53, p=.025\right)$. Adding self-esteem significantly improved the model, so the second model, Performance $=12.999+4.710 \times$ Stress $-1.765 \times$ Self-Esteem + Residual, fit the data even better $\left(R^{2}=.90, F(2,7)=14.65, p=.003\right)$. So, when stress goes up, performance goes up; but when self-esteem goes up, performance goes down. Coping skills didn't contribute to make the model better.

Chapter 18: Reliability Analysis

Use the helping3.sav file for the exercises that follow (downloadable at the address shown above). Measure the internal consistency (coefficient alpha) of the following sets of variables. An "h" in front of a variable name, refers to assessment by the help giver; an " r " in front of a variable name refers to assessment by the help recipient.

Compute Coefficient alpha for the following sets of variables, then delete variables until you achieve the highest possible alpha value. Print out relevant results.

1. hsevere1, hsevere2, rsevere1, rsevere2
2. sympath1, sympath2, sympath3, sympath4
3. anger1, anger2, anger3, anger4
4. hcope1, hcope2, hcope3, rcope1, rcope2, rcope3
5. hhelp1-hhelp15
6. rhelp1-rhelp15
7. empathy1-empath14
8. hqualit1, hqualit2, hqualit3, rqualit1, rqualit2, rqualit3
9. effic1-effic15
10. hcontro1, hcontro2, rcontro1, rcontro2
measure of problem severity
measure of helper's sympathy
measure of helper's anger
how well the recipient is coping
helper rating of time spent helping
recipient's rating of time helping
helper's rating of empathy
quality of help
helper's belief of self efficacy
controllability of the cause of the problem

From the divorce.sav file:
11. drelat-dadjust (16 items)
12. arelat-amain2 (13 items)
13. sp8-sp57 (18 items)
factors disruptive to divorce recovery
factors assisting recovery from divorce
spirituality measures

18-1

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.889	.890	4

Inter-Item Correlation Matrix

	HELPER RATING OF DISRUPTION	HELPER RATING OF TRAUMA	RECIPIENT RATING OF DISRUPTION	RECIPIENT RATING OF TRAUMA
HELPER RATING OF DISRUPTION HELPER RATING OF TRAUMA	1.000	.789	.610	.603
RECIPIENT RATING OF DISRUPTION RECIPIENT RATING OF TRAUMA	.789	1.000	.588	.647

The covariance matrix is calculated and used in the analysis.
Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum/ Minimum	Variance	N of Items
Item Means	5.082	4.886	5.199	.313	1.064	.019	4
Item Variances	2.782	2.638	2.944	.306	1.116	.016	4
Inter-Item Correlations	.668	.588	.789	.201	1.342	.007	4

The covariance matrix is calculated and used in the analysis.
Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
HELPER RATING OF DISRUPTION HELPER RATING OF TRAUMA	15.44	19.157	.754	.655	.859
RECIPIENT RATING OF DISRUPTION RECIPIENT RAT ING OF TRAUMA	15.18	19.718	.768	.668	.854

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
20.33	33.433	5.782	4

18-2

There is a special data file available on the course website for those using the student version of SPSS.

Reliability Statistics			
Cronbach's Cronbach's Alpha	Alpha Based on Standardized Items	N of Items	
.817	.820	3	

Inter-Item Correlation Matrix

	HELPER RATING OF COMPASSI ON	HELPER RATING OF SYMPATHY	HELPER RATING OF MOVED
HELPERRATING OF COMPASSION	1.000	.591	.590
HELPER RATING OF SYMPATHY HELPERRATING OF MOVED	.591	1.000	.626

The covariance matrix is calculated and used in the analysis.

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	5.138	4.732	5.458	. 726	1.153	. 138	3
Item Variances	2.321	1.857	2.790	. 933	1.502	. 218	3
Inter-Item Correlations	. 602	. 590	. 626	. 036	1.061	. 000	3

The covariance matrix is calculated and used in the analysis.

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if ltem Deleted	Corrected tem-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
HELPER RATING OF COMPASSION	9.96	8.291	.655	.429	.768
HELPER RAT ING OF SYMPATHY HELPER RAT ING OF MOVED 10.19	7.333	.683	.467	.733	

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
15.42	15.284	3.910	3

62 IBM SPSS Statistics 23 Step by Step Answers to Selected Exercises

18-3

There is a special data file available on the course website for those using the student version of SPSS.
Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.938	.938	4

Chapter 23: MANOVA and MANCOVA

1. Using the grade.sav file, compute and interpret a MANOVA examining the effect of whether or not students completed the extra credit project on the total points for the class and the previous GPA.
2. Using the grades.sav file, compute and interpret a MANOVA examining the effects of section and lowup on total and GPA.
3. Why would it be a bad idea to compute a MANOVA examining the effects of section and lowup on total and percent?
4. A researcher wishes to examine the effects of high- or low-stress situations on a test of cognitive performance and self-esteem levels. Participants are also divided into those with high- or low-coping skills. The data are shown after question 5 (ignore the last column for now). Perform and interpret a MANOVA examining the effects of stress level and coping skills on both cognitive performance and self-esteem level.
5. Coping skills may be correlated with immune response. Include immune response levels (listed below) in the MANOVA performed for Question 4. What do these results mean? In what way are they different than the results in Question 4? Why?

Stress Level	Coping Skills	Cognitive Performance	Self-Esteem	Immune Response
High	High	6	19	21
Low	High	5	18	21
High	High	5	14	22
High	Low	3	8	15
Low	High	7	20	22
High	Low	4	8	17
High	High	6	15	28
High	Low	5	7	19
Low	Low	5	20	16
Low	Low	5	17	18

23-1

Multivariate Tests ${ }^{\text {c }}$									
Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ${ }^{\text {a }}$
Intercept	Pillai's Trace	. 971	$1733.479^{\text {b }}$	2.000	102.000	. 000	. 971	3466.959	1.000
	Wilks' Lambda	. 029	$1733.479^{\text {b }}$	2.000	102.000	. 000	. 971	3466.959	1.000
	Hotelling's Trace	33.990	$1733.479^{\text {b }}$	2.000	102.000	. 000	. 971	3466.959	1.000
	Roy's Largest Root	33.990	$1733.479^{\text {b }}$	2.000	102.000	. 000	. 971	3466.959	1.000
EXTRCRED	Pillai's Trace	. 100	$5.686^{\text {b }}$	2.000	102.000	. 005	. 100	11.372	. 854
	Wilks' Lambda	. 900	$5.686^{\text {b }}$	2.000	102.000	. 005	. 100	11.372	. 854
	Hotelling's Trace	. 111	$5.686^{\text {b }}$	2.000	102.000	. 005	. 100	11.372	. 854
	Roy's Largest Root	. 111	$5.686^{\text {b }}$	2.000	102.000	. 005	. 100	11.372	. 854

a. Computed using alpha $=.05$
b. Exact statistic
c. Design: Intercept+EXTRCRED

There is a significant effect of whether or not students did the extra credit project and their previous GPA's/class points $\left(F(2,102)=5.69, p=.005, \eta^{2}=.10\right)$.

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ${ }^{\text {a }}$
Corrected Model	GPA	. $055{ }^{\text {b }}$	1	. 055	. 093	. 761	. 001	. 093	. 061
	TOTAL	$2151.443^{\text {c }}$	1	2151.443	9.985	. 002	. 088	9.985	. 879
Intercept	GPA	543.476	1	543.476	923.452	. 000	. 900	923.452	1.000
	TOTAL	749523.786	1	749523.786	3478.731	. 000	. 971	3478.731	1.000
EXTRCRED	GPA	. 055	1	. 055	. 093	. 761	. 001	. 093	. 061
	TOTAL	2151.443	1	2151.443	9.985	. 002	. 088	9.985	. 879
Error	GPA	60.618	103	. 589					
	TOTAL	22192.272	103	215.459					
Total	GPA	871.488	105						
	TOTAL	1086378.000	105						
Corrected Total	GPA	60.673	104						
	TOTAL	24343.714	104						

a. Computed using alpha $=.05$
b. R Squared $=.001$ (Adjusted R Squared $=-.009$)
c. R Squared $=.088$ (Adjusted R Squared $=.080$)

One-way ANOVA suggest that this effect seems to primarily be related to the total class points $\left(F(1,103)=9.99, p=.002, \eta^{2}=.09\right)$ rather than the previous GPA $\left(F(1,103)=.093, p>.05, \eta^{2}=.00\right)$.

Descriptive Statistics

	EXTRCRED	Mean	Std. Deviation	N
GPA	No	2.7671	.78466	83
	Yes	2.8232	.69460	22
	Total	2.7789	.76380	105
TOTAL	No	98.24	15.414	83
	Yes	109.36	11.358	22
	Total	100.57	15.299	105

Students who completed the extra credit project had more points ($M=109.36$, $S D=11.36$) than those who did not complete the extra credit project ($M=$ 98.24, $S D=15.41$).

23-2

There is not a significant main effect of lower/upper division status on total class points and previous gpa $\left(F(2,98)=1.14, p=.323, \eta^{2}=.02\right)$.
There is not a significant main effect of class section on total class points and previous GPA $\left(F(4,198)=1.98, p=.10, \eta^{2}=.04\right)$.
There is a significant interaction between class section and lower/upper division status, on total class points and previous GPA $\left(F(4,198)=4.23, p=.003, \eta^{2}=.08\right)$.
One-way ANOVA suggest that this interaction takes place primarily in the total class points $(F(2,99)=4.60$, $p=.012, \eta^{2}=.09$), though the interaction of lower/upper division status and class section on GPA was only somewhat weaker $\left(F(2,99)=3.00, p=.055, \eta^{2}=.06\right)$.
An examination of means suggests that lower division students had more total points than upper division students in sections $1(M=109.86, S D=9.51$ vs. $M=103.81, S D=17.44)$ and $3(M=107.50$, $S D=9.47$ vs. $M=95.93, S D=17.64$), but upper division students had more total points ($M=103.18, S D$ $=9.44)$ than lower division students $(M=90.09, S D=13.13)$ in section 2 . Lower division students had higher GPA's than upper division students is sections $2(M=2.84, S D=.99$ vs. $M=2.67, S D=.68)$ and $3(M=3.53, S D=.50$ vs. $M=2.57, S D=.77)$, but lower GPA's $(M=2.72, S D=.99)$ than upper division students $(M=3.00, S D=.71)$ in section 1 .

23-4

MANOVA suggests that there is a main effect of stress on cognitive performance and self-esteem $(F(2,5)=$ $\left.13.70, p=.009, \eta^{2}=.85\right)$. One-way ANOVA suggest that this effect is primarily centered on the relation between stress and self-esteem $\left(F(1,6)=32.55, p=.001, \eta^{2}=.84\right)$ rather than stress and cognitive performance $\left(F(1,6)=1.37, p>.05, \eta^{2}=.19\right)$. Those in the low-stress condition had higher self-esteem ($M=18.75, S D=1.50$) than those in the high-stress condition ($M=11.83, S D=4.88$).
MANOVA also revealed a significant main effect of coping on cognitive performance and self-esteem $\left(F(2,5)=6.24, p=.044, \eta^{2}=.71\right)$. One-way ANOVA suggest that this effect is clearly present in the relation between coping and self-esteem $\left(F(1,6)=13.27, p=.011, \eta^{2}=.70\right)$, though the relation between coping and cognitive performance was marginally significant as well $\left(F(1,6)=5.49, p=.058, \eta^{2}=.48\right)$. Those with high coping skills had higher self-esteem ($M=17.20, S D=2.59$) than those with low coping skills $(M=12.00, S D=6.04)$. Those high coping skills may have also had higher cognitive performance ($M=5.80, S D=.84$) than those with low coping skills $(M=4.40, S D=.89)$.
The interaction effect between coping and stress levels was not significant $\left(F(2,5)=4.42, p=.079, \eta^{2}=.64\right)$.

Chapter 24: Repeated-Measures MANOVA

1. Imagine that in the grades.sav file, the five quiz scores are actually the same quiz taken under different circumstances. Perform repeated-measures ANOVA on the five quiz scores. What do these results mean?
2. To the analysis in exercise 1, add whether or not students completed the extra credit project (extrcred) as a between-subjects variable. What do these results mean?
3. A researcher puts participants in a highly stressful situation (say, performing repeated-measures MANCOVA) and measures their cognitive performance. He then puts them in a low-stress situation (say, lying on the beach on a pleasant day). Participant scores on the test of cognitive performance are reported below. Perform and interpret a within-subjects ANOVA on these data.

Case Number:	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{10}$
High Stress:	76	89	86	85	62	63	85	115	87	85
Low Stress:	91	92	127	92	75	56	82	150	118	114

4. The researcher also collects data from the same participants on their coping ability. They scored (in case number order) $25,9,59,16,23,10,6,43,44$, and 34 . Perform and interpret a within-subjects ANCOVA on these data.
5. The researcher just discovered some more data...in this case, physical dexterity performance in the high-stress and low-stress situations (listed below, in the same case number order as in the previous two exercises). Perform and interpret a 2 (stress level: high, low) by 2 (kind of performance: cognitive, dexterity) ANCOVA on these data.

Physical dexterity values:

Case Number:	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{10}$
High Stress:	91	109	94	99	73	76	94	136	109	94
Low Stress:	79	68	135	103	79	46	77	173	111	109

24-1

Descriptive Statistics

	Mean	Std. Deviation	N
QUIZ1	7.47	2.481	105
QUIZ2	7.98	1.623	105
QUIZ3	7.98	2.308	105
QUIZ4	7.80	2.280	105
QUIZ5	7.87	1.765	105

Multivariate Tests

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ${ }^{\text {a }}$
CONDITIO	Pillai's Trace	. 152	4.539^{6}	4.000	101.000	. 002	. 152	18.156	. 934
	Wilks' Lambda	. 848	$4.539^{\text {b }}$	4.000	101.000	. 002	. 152	18.156	. 934
	Hotelling's Trace	. 180	$4.539^{\text {b }}$	4.000	101.000	. 002	. 152	18.156	934
	Roy's Largest Root	. 180	$4.539^{\text {b }}$	4.000	101.000	. 002	. 152	18.156	934

a. Computed using alpha $=.05$
b. Exact statistic
c.

Design: Intercept
Within Subjects Design: CONDITIO
These results suggest that there is a significant difference between the five conditions under which the quiz was taken $\left(F(4,101)=4.54, p=.002, \eta^{2}=.15\right)$. We can examine the means to determine what that pattern of quiz scores looks like.

24-2

When the condition in which the quiz was taken is examined at the same time that extra credit participation is examined, there is no difference between the conditions on their own $\left(F(4,412)=.51, p>.05, \eta^{2}=.01\right)$. There is, however, an interaction effect between the quiz condition and extra credit participation $(F(4,412)=$ 7.60, $p<.001, \eta^{2}=.07$).

An examination of the means suggests that doing the extra credit helped more for the quiz in conditions 1 and 4 (or, not doing the extra credit hurt more in conditions 1 and 4) than in the other conditions, with the extra credit affecting the quiz score least in conditions 2 and 5.
There was also a significant main effect of doing the extra credit $\left(F(1,103)=10.16, p=.002, \eta^{2}=.09\right)$ such that people who did the extra credit assignment had higher scores overall $(M=8.86, S E=.37)$ that those who didn't do the extra credit assignment $(M=7.54, S E=.19)$.

24-4

There is a significant difference in cognitive performance between individuals in the high stress ($M=83.30$, $S D=14.86$) and low stress ($M=99.70, S D=27.57$) conditions, $F(1,8)=10.50, p=.012, \eta^{2}=.57$.
There is also a significant interaction between stress and coping skills in their effect on cognitive performance, $F(1,8)=128.28, p<.001, \eta^{2}=.94$. Note that to interpret this interaction, we would need to examine scatterplots and/or regressions for the relation between coping and cognitive performance for the high and low stress conditions. An example of this graph is shown here:

There is also a significant relationship between coping and cognitive performance overall $(F(1,8)=7.26, p=$ $.027, \eta^{2}=.48$). From the graphs above, it is clear that as coping skills increase, so does performance on the cognitive task.

